摆线
graph LR
start[开始] --> input[输入A,B,C]
input --> conditionA{A是否大于B}
conditionA -- YES --> conditionC{A是否大于C}
conditionA -- NO --> conditionB{B是否大于C}
conditionC -- YES --> printA[输出A]
conditionC -- NO --> printC[输出C]
conditionB -- YES --> printB[输出B]
conditionB -- NO --> printC[输出C]
printA --> stop[结束]
printC --> stop
printB --> stop
参数方程
\[\begin{cases} x=r(t-\sin t) \\ y=r(1-\cos t) \\ \end{cases}\]一般方程
消去$ \cos t $:
\[\cos t=1-\frac{y}{r}\]消去t
\[t=\arccos(1-\frac{y}{r})\]消去$ \sin t $:
\[\begin{align} \sin t &=t-\frac{x}{r} \\ &=\arccos(1-\frac{y}{r})-\frac{x}{r} \end{align} \tag{3}\]则有
\[\begin{align} \sin^{2}t+\cos^{2}t &=(\arccos(1-\frac{y}{r})-\frac{x}{r})^{2}+(1-\frac{y}{r})^{2} \\ &=1 \end{align}\]即
\[(r\arccos(1-\frac{y}{r})-x)^{2}+y(y-2r)=0\]微分方程
\[(\frac{\mathrm{d} y}{\mathrm{d} x})^{2} =\frac{2r}{y}-1\]推导过程
\[\begin{align} (\frac{\mathrm{d} y}{\mathrm{d} x})^{2} &=(\frac{\frac{\mathrm{d}y}{\mathrm{d}t}}{\frac{\mathrm{d}x}{\mathrm{d}t}})^{2} \\ &=(\frac{r\sin t}{r(1-\cos t)})^{2} \\ &=\frac{\sin^{2} t}{(1+\cos t)^{2}} \\ &=\frac{1-\cos t}{1+\cos t} \\ &=\frac{2}{1-\cos t}-1 \\ &=\frac{2r}{y}-1 \end{align}\]